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Abstract: We report the implementation of an all-atom Brownian dynamics simulation model of peptides
using the constraint algorithm LINCS. The algorithm has been added as a part of UHBD. It uses adaptive time
steps to achieve a balance between computational speed and stability. The algorithm was applied to study the
effect of phosphorylation on the conformational preference of the peptide Gly-Ser-Ser-Ser. We find that the
middle serine residue experiences considerable conformational change from theC7eq to theRR structure upon
phosphorylation. NMR3J coupling constants were also computed from the Brownian trajectories using the
Karplus equation. The calculated3J results agree reasonably well with experimental data for phosphorylated
peptide but less so for doubly charged phosphorylated one.

I. Introduction

Molecular dynamics (MD) simulations of biomolecules1

provide detailed atomistic information that is often difficult to
obtain directly from experiments. However, it is difficult to carry
out long simulations for long polypeptides with explicit solvent
models. Salt effects are also difficult to include by simply adding
counterions to the simulation since it takes a long time for the
ions to thoroughly sample the important space around a
polypeptide. Stochastic dynamics simulations provide a poten-
tially useful tool for simulating the long-time dynamics of
polypeptides. In a Langevin dynamics (LD) simulation, one does
not include the solvent molecules and the counterions explicitly
but models their effects implicitly by using solvent-averaged,
frictional, and stochastic forces. The Langevin equation can be
solved more easily in the overdamped limit, at which inertial
effects are ignored. This approximation usually applies to
studying the lower-frequency dynamics of polypeptides, for
example, when the bond vibrations of the polypeptides are
neglected. In this paper, we term the overdamped limit of
Langevin dynamics as Brownian dynamics (BD).

Earlier BD simulations of polypeptides modeled2 a polypep-
tide as a string of spheres, each representing an amino acid,
connected successively by virtual bonds. As computer power
is increasing, more detailed BD models have also been
introduced. These include models with each residue represented
by two spheres (one represents the backbone and the other the
side chain)3 and atomistic models.4 For these detailed models,
efficient and stable algorithms for maintaining bond-length
constraints are needed. The SHAKE algorithm5 commonly used

in MD simulations is not adequate for BD simulations because
the time steps in the latter simulations are larger and the SHAKE
algorithm fails to converge. Here we describe the implementa-
tion of a full atomistic BD algorithm into UHBD6 using the
constraint technique LINCS.7 We test this algorithm by using
it to study the conformational switching of the peptide Gly-
Ser-Ser-Ser (GSSS) upon phosphorylation.

II. Methods

A. BD Algorithm. The LD equation can be expressed as

Here indexi labels particlei in the system, and the total force consists
of three parts. In addition to the systematic forces given by the negative
gradient of the potential of mean force,fBi ) - ∇iU({rbj}), there are
frictional and stochastic forces to describe the dynamical effects of the
solvent on the system.RBi(t) is a random force having a zero mean〈RB(t)〉
) 0 and a variance〈RBi(t)RBj(0)〉 ) 2êijkBTδ(t). In this work, we neglect
hydrodynamic interactions so that the frictional matrix is diagonal, that
is, êij ) δijêi in which êi is a frictional coefficient. The collision
frequencyγi is defined asêi/mi.

In the overdamped limit, we set the left side of eq 1 to zero.
Integrating the resulting equation for a time step of dt gives the
following equation for propagating a Brownian trajectory:

whereDi ) kBT/êi is the diffusion coefficient andωb i is a random noise
vector obtained from a standard normal distribution. Equation 2 is the
first-order Ermak-McCammon algorithm.8 Later, several higher-order
algorithms such as the stochastic Runge-Kutta (SRK)9 and the
stochastic expansion (SE)10 algorithms were developed, and these
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algorithms had been compared using a simple homogeneous system.11

We have tested the SRK scheme and several others and found that the
time step could not be increased much by these higher-order algorithms
for polypeptides. These algorithms also require several expensive
evaluations of forces or their time derivatives each time step, and we
decided to use a simpler first-order algorithm in this work.

B. Constraints. By eliminating the less interesting high-frequency
motions such as those arising from bond vibrations, one can use larger
time steps in BD simulations. In this study, we constrainall of the
bond lengths of the tetrapeptide to make it easier to simulate the system
to the microsecond time scale. Here, we use the LINCS7 algorithm for
imposing bond-length constraints. LINCS is a predictor-corrector
algorithm that has been demonstrated12 to be more efficient and stable
than the well-known SHAKE algorithm.5 It is also easier to parallelize
LINCS than SHAKE. We do not constrain bond angles since previous
dynamical simulations have demonstrated13,14coupling between angular
and lower frequency motion.

C. Adaptive Time Step.Constraining bond lengths makes it possible
to use larger time steps in BD simulations, but we found unfavorable
atomic clashes can occur once in millions of steps when a large time
step was used. These are likely due to the fact that constraint algorithm
only regulates the bonding terms for filtering out high frequency modes,
but does not include the nonbonding terms, especially the van der Waals
(vdW) interaction.

To avoid this problem without sacrificing the use of large time steps,
we introduced an adaptive time step method into the algorithm.
Adaptive stepsize has been widely used in numerical integration of
differential equations,15 and the determination of stepsize is usually
obtained from error analysis. Our algorithm dynamically chooses a time
step based on analysis of the energy of a polypeptide during a BD
simulation.

The algorithm applies a user-chosen “normal” time step dt most of
the time. However, the time step was split inton smaller ones dt′ )
dt/n whenever the vdW energy of a configuration is larger than a
predetermined threshold. That is, the code will decide the size of the
next time step base on the vdW energy of the previous step. The proper
threshold and normal time step are system-, model-, and temperature-
dependent. Generally the more detailed the model, the smaller the time
step one must use. For the tetrapeptide studied here, the threshold is of
the order of tens of kcal/mol and dt is about 10 fs. The small time
steps are used less than 1% of the time in our simulations. This adaptive
time step approach permits a time step dt to be several times larger
than that in a constant time step algorithm.

D. All-Atom Model and Parametrization. The CHARMM all-atom
force field16 was used in the simulation. Solvent-screening effects were
modeled by using a distance-dependent dielectric function withε ) R.
Hydrophobic effects were modeled17 by a term proportional to the
solvent accessible surface (SAS) area of the polypeptide. The propor-
tionality constant, microscopic surface tension, was set at 6 cal
(mol‚Å2)-1.

The diffusion coefficients of individual atoms were assigned
according to

Here, T* is 300 K and η is the viscosity of water: 0.891 cp. The
weighting factorwi was chosen according to

This is essentially the Stokes-Einstein equation with the radius of
each atom chosen as its vdW radius plus 1.4 Å, the approximate radius
of a water molecule. Light atoms were given a weightwi to increase
their diffusion coefficients. This was done to make the simulation
parameters closer to an earlier simulation employing a fixed collision
frequencyγ for all atoms.18 However, the choice of diffusion coef-
ficients only affects (assuming that all diffusion coefficients are larger
than 0) dynamical properties, not static properties as those calculated
in this paper.

III. Peptide Phosphorylation

Protein phosphorylation plays an important role in metabolic
regulation.19 Significant efforts have been devoted to investigate
whether phosphorylation triggers signal transduction by altering
the conformation of a protein and, if so, whether the confor-
mational change results from tertiary interaction alone or from
secondary interaction as well. By simulating short peptides, one
can minimize the effects of tertiary interactions and focus on
analyzing secondary ones. Here, we use our atomistic BD
simulation algorithm to simulate the conformational distribution
of a tetrapeptide GSSS in the phosphorylated and nonphospho-
rylated forms to gain insights into the switching of secondary
structure by protein phosphorylation.

A key reason for choosing this tetrapeptide is that it has been
studied by NMR experiments both in the phosphorylated and
nonphosphorylated form.20 The proton chemical shifts and the
spin-spin coupling constants of the protons in HNCRHs have
been measured for the unphosphorylated peptide, GSSS, and
the peptide with the middle serine phosphorylated, Gly-Ser-
Ser(p)-Ser (GSSpS). The NMR data suggest that phosphoryla-
tion induces backbone conformational changes.

A total of five peptides were built with Quanta98.21 They
are listed in Table 1. They differ from each other by whether
their termini are blocked and whether the middle serines are
phosphorylated. We used acetyl (CH3CdO) and methylamide
(NHCH3) to block the amino and carboxy termini, respectively,
for the blocked peptides. Note that our carboxy termini were
blockeddifferentlyfrom the experimental study20 in which NH2

was used instead of methylamide. The pKa’s22 of the phosphoryl
group (pKa1 < 2 and pKa2 ) 5.9) suggest that the terminally
blocked phosphorylated peptides exist largely in the totally
deprotonated (dianionic) form at pH 7 or higher. However, at
lower pHs such as those used in the experimental study of
GSSS,20 the population of both the totally deprotonated (b2,
-2e) and the singly protonated (b1 and z1,-1e) forms are
significant. Figure 1 shows a structure of b2.

The initial structures of the peptides were built in the fully
extended form and all-atom models were used. The CHARMM
force field16 only has potential parameters for the singly
protonated phosphoserine. In modeling the doubly charged
phosphoserine, we deleted the hydrogen of the singly protonated
form and recalculated the atomic charges using the Gasteiger
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To speed up conformational sampling, we carried out
Brownian dynamics simulations atTi ) 500 K. We then used
the histogram method24 to obtain probability distribution and
ensemble-averaged properties atTf ) 283 K at which the
experimental measurements were made. In this work, we used
the scaling weight exp[U({rbj})(1/kBTi - 1/kBTf)] for calculating
ensemble-averaged properties.

Each peptide was simulated for 1µs with the adaptive time
step method using a normal time step of 10 fs and a small time
step of 2.5 fs when the vdW energy of the current snapshot
was larger than 17.5 kcal/mol. The choice of cutoff is based on
the alanine tetrapeptide and other test systems of similar size.
Choosing a lower cutoff would make the code use small time
step more frequently and slow the calculation; a higher cutoff
could risk instability. Each run took between 60 and 80 h on a
Pentium III (500 MHz) Linux box.

IV. Results and Discussion

The free energy profiles are shown as Ramachandran maps
of the middle serine of GSSS/GSS(p)S in Figure 2. Figure 2a
shows that the terminally blocked unphosphorylated peptide
strongly populates theC7eq region (a region around (φ, ψ) )
(-70°, 80°)). However, as the peptide is phosphorylated, the
RR region (a region which forms the rightR-helix structure,
around (-60°, -40°)) is more populated than theC7eq region
(Figure 2b). This finding is a valuable complement to the
experimentalJ coupling result. The latter is only sensitive to
the backbone torsional angleψ, but not toφ, which is critical
to define the secondary structure. The doubly charged phos-
phorylated peptide, which can be found at high pHs, also
samples theRR region significantly, plus a nearby region around
φ ) -150°, ψ ) -60° (Figure 2c). When the termini of the
peptides were not blocked, the shift fromC7eqto R conformation
upon phosphorylation was not observed in the simulations
(Figure 2, d and e).

Table 2 shows some quantitative results. For the terminally
blocked unphosphorylated peptide, theC7eq conformation is
more stable than theR form by 0.7 kcal/mol. When the peptide

is phosphorylated, this order is reversed, and theR form is more
stable than that of theC7eq by 2 kcal/mol. The helicity of the
first serine along the peptide chain is also increased by
phosphorylation. The doubly charged form, which occurs at high
pH, also favors the helical state. The above free energy
differences were calculated at 500 K. We used 500 K instead
of 283 K because the results at 500 K give smoother-looking
free energy maps, while the results at 283 K are rougher, making
it difficult to identify peak positions and free energy differences
between peaks. But from the results for the probability density
function (PDF) below, it is easy to see that qualitatively the
same conclusion holds for the room-temperature case.

The Karplus equation25 is an empirical relation for connecting
the magnitude of the spin-spin coupling constant3J(HNHR) with
the dihedral angleθ (HN-N-CR-HR) as3J ) F(θ) ≡ A cos2 θ
+ B cosθ + C. The parameters for the Karplus relation can be
fitted from NMR and crystallographic data of proteins.26

Theoretical results from quantum chemistry calculations of
simple peptides27 agree qualitatively with those obtained from
the Karplus equation whose parameters were derived from
proteins.

Since small peptides are flexible in solution, we calculated
the ensemble average of3J as a functional of the probability
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Table 1. Peptides List

name Pser blockeda deprotonatedb exp. condition

b0 no yes - Ac-GSSS-NH2 pH4.7
b1 yes yes single Ac-GSSpS-NH2 pH6.5
b2 yes yes double Ac-GSSpS-NH2 pH6.5
z0 yes no - GSSS pH4.7
z1 yes no single GSSpS pH4.7

a Our blocked tetrapeptide X has a form of Ac-X-NHCH3. b The
deprotonated state refers to the phosphoryl group if applicable.

Figure 1. Starting structure of the totally deprotonated phosphorylated
peptide GSS(p)S with blocked termini (b2).

Figure 2. Conformational free energy shown as a function of the
backbone torsional angles,φ andψ of Ser3 at 500 K for b0 (a), b1 (b),
b2 (c), z0 (d), and z1 (e). Gray levels were used to indicate free energy
values, darker indicates a higher free energy. The brightest regions
correspond to lowest values of free energy and are most heavily
sampled.
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distribution of the torsional angleθ

for comparison with corresponding experimental data. In our
calculations,θ was obtained fromφ as θ ) φ - 60. This
expression is commonly used in relating measured3J with φ

obtained from crystal structures of proteins such as in the fitting
of the parameters of the Karplus equation. Figure 3 shows that
theθ ) φ - 60 approximation is quite good. We also collected
the torsional anglesθ and calculated3J directly using them (data
not shown). The results are similar to those results obtained by
converting observedφ to θ as shown below.

Table 3 compares the calculated and experimental3J at 283
K. The results for the unphosphorylated peptide (b0) agree well
with experiments.20 All of the computed3J coupling constants
except that of Gly1 are within 0.1 Hz of their corresponding
experimental values. Gly1 shows a slightly larger discrepancy
between computed and experimental results, but the difference
is only 0.2 Hz, which is within the error bars of the calculated

and experimental results. We chose the experimental data at
pH 4 for comparing with the simulated results for the singly
charged phosphorylated peptide (b1) because this form should
dominate at this pH according to the pKa of phosphoserine. The
agreement between simulated and experimental results is still
good although less so than for the unphosphorylated form. In
particular, the computed3J value for the phosphorylated serine
differs from the experimental value by 0.8 Hz, but both
experiment and simulation agree on the negative shift of3J upon
phosphorylation of serine. The approximate distance-dependent
dielectric model may not be able to describe the electrostatic
effects as well for this charged system compared to the neutral
terminally blocked nonphosphorylated peptide. The agreement
between simulated and experimental results for the doubly
charged phosphorylated peptide (b2) deteriorates further. This
could also result from the inadequacy of the distance-dependent
dielectric model in describing electrostatics effects. In addition,
the experimental data of the phosphorylated peptides are very
sensitive to the pH value, and at pH 6.5, the contribution from
the singly charged form is also significant.

Figure 4 shows the PDF of conformation of Ser3 before and
after the corrections to 283 K by the histogram method, which

Table 2. Comparison of Peptide Conformational Properties at 500 K

peptide (residue) C7eqpeak(s)a R peak(s) ∆GC7eqfR (kcal/mol)

b0 Gly1 (-85.0, 80.2) (-75.0,-39.9) 0.889
Ser2 (-85.0, 80.1) (-74.9,-40.1) 0.406
Ser3 (-85.0, 80.2) (-75.1,-35.2) 0.669
Ser4 (-85.0,120)/(-160,140) (-80,-45) 0.683/0.717

b1 Gly1 (-84.9 90.0) (-80, 60) -0.141
Ser2 (-157.5, 40.2) (-79.8,-37.5) -0.577
Ser(p)3 (-82.5, 87.6) (-75.0, 45.3) -1.98
Ser4 (-94.7, 70.3) (-80,-35)/(-160,-55) 0.523/0.612

b2Gly1 (-177.6, 50.1) (-177.6,-69.8) -0.902
Ser2 (-155.2, 35.0) (-85,-42)/(-160,-48) 0.08/0.08
Ser(p)3 (-82.9, 149.9) (-155.0,-60)/(-85,-50) -0.71/-0.64
Ser4 (-100, 40)/(-150, 35) (-84.9,-14.6) 0.594/0.518

z0 Gly1 - - -
Ser2 (-82.5, 87.6) (-74.7,-44.9) 0.736
Ser3 (-160, 145.1)/(80, 125) (-82.4,-40.2) 0.328
Ser4 - - -

z1 Gly1 - - -
Ser2 (-94.9, 65.0) (-75.3,-39.6) 0.551
Ser(p)3 (-75.0, 125.1) (-82.4,-40.0) 0.63
Ser4 - - -

a Here, the C7eq region refers to the region of the whole up-left quadrant of Ramachandran map (φ < 0 andψ > 0); RR region ofφ < 0 andψ
< 0.

Figure 3. Probability density functions (PDFs) ofθ andφ. The data
were recorded from the 1µs run of b1. They show thatθ and φ

approximately differ by a phase shift of 60°.

〈3J〉 )
∫F(θ)p(θ)dθ

∫p(θ)dθ
(5)

Table 3. Comparison of Calculated and Experimental3J at 283 K

peptide (residue) theor3Ja theor3Jb exptl 3J (Hz, (0.12)c

b0 Gly1 6.259 5.973 5.6/5.81
Ser2 6.464 6.705 6.72
Ser3 6.648 6.851 6.83
Ser4 6.772 7.078 7.14
b1 Gly1 6.182 6.140 5.74/?
Ser2 6.693 6.960 6.66
Ser(p)3 5.363 5.659 6.48
Ser4 7.464 7.639 7.3
b2 Gly1 5.952 6.132 (5.63/6.43)
Ser2 7.148 7.489 6.65
Ser(p)3 6.440 6.762 5.84
Ser4 6.826 6.901 6.93

a A ) 6.7/B ) 1.3/C ) 1.5, Ludvigsen, S.; Andersen, K. V.; Poulsen,
F. M. J. Mol. Biol. 1991, 217, 731-736. b A ) 6.51/B ) -1.76/C )
1.60, Vuister, G. W.; Bax, A.J. Am. Chem. Soc.1993, 115, 7772-
7777.c Tholey, A.; Lindemann, A.; Kinzel, V.; Reed, J.Biophys. J.
1999, 76, 76-87.
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leave a rougher landscape. We used the PDF results for 283 K
to calculate3J in Table 3.

It is interesting to know whether the conformational change
of peptide phosphorylation results from electrostatic or steric
effect. To answer this question, we also did some test with
setting charges of all the side chain atoms of residue 3 to zero.
The results show that electrostatic effect is important. Without
it, the conformation of the third residue does not have as
dramatic a shift from C7eq to RR. Instead, both conformations
have similar populations (data not shown).

V. Concluding Remarks

An all-atom constrained BD simulation algorithm has been
implemented into the program UHBD6 and tested on simulating
tetrapeptides. An adaptive time step approach was introduced
to reduce computational costs by allowing large time steps to
be used. Microsecond simulations at 500 K were demonstrated
to sample the conformational space of the peptides well, and
the resulting ensembles allowed equilibrium properties at lower
temperatures to be estimated using the histogram method. The
calculated spin-spin coupling constants agree reasonably well
with experiments. This gives confidence on using the simulation
results to deduce the conformational changes of the peptide upon
phosphorylation. The present constrained BD algorithm using
adaptive time step is about 10 times faster than a corresponding
LD simulation.

Our simulations of the tetrapeptide GSSS and its phospho-
rylated peptide GSS(p)S show that phosphorylation shifts the
conformational preference from theC7eq region into theRR

region. This algorithm should be helpful to the study of the
properties of other flexible peptides in solution generally.

Although a simple distance-dependent dielectric model was
used in this initial development of the atomistic Brownian
dynamics method, the quality of such calculations can be
improved in the future by application of the generalized Born28,29

or Poisson-Boltzmann18 solvation models.
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Figure 4. Probability density function (PDF) of conformation of Ser3
shown as a function of the backbone torsional anglesφ andψ. Darker
indicates a higher value. The darkest are the highest probability regions.
(a) and (b) show the changes of the PDF of b0 from 500 K to 283 K
using the histogram method. (c) and (d) are the PDFs at 283K for b1
and b2.
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